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1 Introduction
This  document  is  a  guide  to  the  use  of  the  Legion of  the  Bouncy Castle  (BC)  C-Sharp  (C#)
Application  Programming  Interface  (API);  BC  C#  API  for  short,  and  how  it  presents  the
cryptographic  functions/algorithms.  It  does  not  directly  provide  details  on  the  cryptographic
algorithms used, unless required in the examples which follow. The document is meant to provide
details and examples on how to use the .NET module. 
The reader is assumed to have an understanding of C# and also to have had some exposure to the
principals of cryptography.  Having an existing understanding of the System.Security.Cryptography
(both the Microsoft Windows .NET Framework API and the cross-platform .NET 5+ versions) is
useful in following the examples below – however, the BouncyCastle.Cryptography.dll assembly
is standalone.
The examples are not meant to be definitive, but they should provide you with a good overview of
what can be done with the BC C# API. For simplicity the examples in this document do not include
the using directive statement, but you can find the full source for them as well as a user guide at
https://www.bouncycastle.org/  csharp  . 

https://www.bouncycastle.org/fips-csharp
https://www.bouncycastle.org/fips-csharp


2 Getting Started
This  chapter  provides  a  quick  look  at  the  set  up  and  configuration  of  the  Bouncy  Castle  C#
cryptographic  assembly  BouncyCastle.Cryptography.dll.  In  what  follows  we  refer  to  this
cryptographic  assembly  as  the  “Provider”  or  “Bouncy  Castle  Provider”.  The  Bouncy  Castle
provider can either be installed via the Global Assembly Cache (GAC) or used directly during
execution. You will need to find out the process involved for the BouncyCastle.Cryptography.dll
assembly if you intend to install in the GAC or other known assembly path.

You can access the assembly directly at compile time and make this available to your application.
Under  Linux ensure  you have  the  correct  version  of  dotnet installed.  The  current  assembly  is
complied against .NET 6.0 and .NET 4.6.1 – both of these will build the assembly directly using
either  the  Linux dotnet or  MS  Windows  dotnet executable.  Once  you  have  the  source  code,
navigate to the Linux folder: /home/../bc-csharp/crypto/src (or to the folder c:\..\bc-csharp\crypto\
src if you are using MS Windows). Then it is a simple matter to execute the command: 
dotnet clean followed by dotnet build.

Your dotnet framework should come with the msc (Mono C# compiler). Create your application and
then use msc to compile the application to use with the assembly. Under MS Windows, the setup is
similar except you will use the csc.exe compiler instead. The compiler will produce an executable
which can access the assembly during execution of your application. Alternatively as a quick start,
create a MS project file for your application (or project). The example below provides a very simple
MS project file which will allow you to use the BC C# assembly from your application:

Example 1 – Basic .Net Project Using BC C# Assembly
<Project Sdk="Microsoft.NET.Sdk">

  <PropertyGroup>
    <OutputType>Exe</OutputType>
    <TargetFramework>net6.0</TargetFramework>
    <RootNamespace>my_dotnet</RootNamespace>
    <ImplicitUsings>enable</ImplicitUsings>
    <Nullable>enable</Nullable>
    <StartupObject>TestExamples</StartupObject>
  </PropertyGroup>

 <ItemGroup>
    <Reference Include="BouncyCastle.Cryptography.dll">
      <HintPath>./BouncyCastle.Cryptography.dll</HintPath>
    </Reference>
  </ItemGroup>

</Project>

Once you have the project file and the assembly, the command: 
dotnet run --project my-dotnet.csproj

will execute your main method in the specified class (TestExamples in the above example). 

../../../../../../../c:/


2.1 Brief Introduction to Random Numbers
In the area of cryptography, random numbers are essential. There are many areas in which random
numbers are used, for example in generating keys for symmetric ciphers, helping in generating large
numbers  (generally  primes)  for  asymmetric  algorithms  and  for  introducing  nonces1 into  a
cryptographic algorithm to stop (or reduce) so called replay2 attacks. 

There are at least three meanings when one mentions random numbers. These are:
1. TRNG, True Random Number Generator – these are systems which generate numbers (or bit

strings  if  you  prefer)  which  come  from a  physical  random source  such  as  noise  from
heat/voltage  dissipation,  noise  from  radioactive  decay  or  from  atmospheric  noise  (see
www.random.org) and many more random physical processes. If your hardware supports a
TRNG, then this can accessed from your C# code.

2. PRNG,  Pseudo-Random Number Generator (also known as DRBG, Deterministic Random
Bit Generator) – these are mathematical algorithms which generate numbers from a function
usually initialised using a integer termed a seed value. Naturally these numbers are not truly
random, since there are finite number of such values which can be generated – eventually
the sequence of numbers will repeat. (Contrast this to something like an atmospheric noise
TRNG which can be approximated as a continuous set  of values.  Thus for all  practical
purposes, with a TRNG we can generate a infinite number of distinct values.)

3. CSPRNG, Cryptographically Secure Pseudo-Random Number Generator – these again use a
mathematical algorithms in which generate random bit strings. The difference between a
PRNG and a CSPRNG is that the later must be resistant to cryptographic attacks. 

In  Bouncy Castle C# cryptographic assembly it is possible to use all three of the above. For a
TRNG your code will  need to access the hardware and once that is  achieved, you can use the
implement the interface class IEntropySourceProvider.  C# directly supports a modified version of a
linear congruence alogorithm which can be used as a PRNG. We use this in the examples which
follow below since we wish to obtain consistent keys and cipher text during testing. 

Example 2 – Default C# PRNG
public static byte[] exampleDefaultCSharpRandom()
{
    ExValues.fixedRandomSeed = 151;
    ExValues.fixedRandom = new Random(ExValues.fixedRandomSeed);
    byte[] bytes = new byte[32];
    ExValues.fixedRandom.NextBytes(bytes);
    return bytes;
}

The code in the example above will provide you with a consistent set of “random” numbers useful
for testing. Executing the above code twice will result in the same array of bytes being generated.
Note that C# also provides a cryptographically secure PRNG in the class RandomNumberGenerator. The
BC API also provides for PRNG and CSPRNG as in the examples below. 

1 A nonce is an integer – within a specified range – which is a random integer or a pseudo-random integer.
2 A replay attack, in simple terms, occurs when an adversary intercepts a cryptographic message/data and re-sends 

that message/data at a later time.

http://www.random.org/


Example 3 – BC Default SecureRandom
public static byte[] exampleDefaultSecureRandom()
{
    SecureRandom defaultSecureRandom = new SecureRandom();
    byte[] bytes = new byte[32];
    defaultSecureRandom.NextBytes(bytes);
    return bytes;
}

The  default  SecureRandom is  based  upon   the  SHA256   digest  algorithm.  The  seed  value  is
supplied via the C# internal class RandomNumberGenerator. Executing the above code twice shows that
the set of bytes are different.  SecureRandom generated as in the example above is cryptographically
secure and is sufficent in most cryptographic cases. However, the BC API also provides for several
NIST SP.800-90A recommended methods in generating cryptograpcially secure random numbers.
The NIST document recommends DRBG based on 

• hash functions,
• HMACs (known as  Keyed-Hash Message Authentication Codes or Hash-based Message

Authentication Codes), and
• block ciphers.

The example below shows the generation of a SecureRandom object based upon a HMAC.

Example 4 – BC HMAC SecureRandom
public static byte[] exampleHMACSecureRandom(IDigest digestToUse, byte[] nonce)
{        
    SP800SecureRandomBuilder hMacSecureRandomBuilder = 
        new SP800SecureRandomBuilder(ExValues.cSharpFixedRandom, false);

    hMacSecureRandomBuilder.SetPersonalizationString(ExValues.personalizationString);
    // hMacSecureRandomBuilder.SetSecurityStrength(256); default is 256 bits
    // hMacSecureRandomBuilder.SetEntropyBitsRequired(256); default is 256 bits

    HMac hmacDigest = new HMac(digestToUse);
    SecureRandom hmacSecureRandom = hMacSecureRandomBuilder.BuildHMac(hmacDigest, nonce, false);
    byte[] bytes = new byte[32];
    hmacSecureRandom.NextBytes(bytes);
    return bytes;
}



3 Symmetric Cipher Algorithms
Symmetric cryptographic algorithms can be categorised into two distinct flavours:

• Block Ciphers which encrypt a fixed size ordered set of plain text bytes, known as a block, 
one block at at time. In this case if the plain text does not come fit into an integral number of
blocks, then padding is used to fill the remaining block.

• Stream Ciphers convert one byte of plain text directly into a byte of cipher text. In contrast 
to Block Ciphers, no padding is required.

Things however, get more complicated than the above two categories when talking about symmetric
ciphers. In addition we have the concept of “modes” of operation for block ciphers. Depending on
the mode of operation, certain block ciphers can operate as stream ciphers. (Note however, that a
dedicated stream cipher can not be converted, using some mode, into a block cipher.)  In summary
then, we have 

• Block Ciphers which operate in certain modes. Certain modes allow certain block ciphers to
operate as a streaming cipher.

• Stream Ciphers which operate in their own dedicated modes.

As mentioned above, block ciphers operate on a fixed block size (usually 64, 128 or 256 bits).
Therefore, in certain modes, that is, modes which don’t convert to streaming, where a block cipher
is used,  if the plain text is not a multiple of the block size, then padding needs to be added to the
plain text. In contrast, stream ciphers, or block ciphers used as streams, these do not require this
step of adding padding. 

The BC C# API essentially consists of a series of “engines” and a series of “modes”. An engine can
be thought of as the underlying mathematical permutation algorithm used to generate the cipher.
(More technically if you are inclined – an engine with has a k-bit key is a bijection from the set 2k

bits applied to a string of  n-bits.) A mode of operation of a block cipher can be thought of as  a
process (or algorithm)  which specifies how to apply an n-bit block cipher to achieve this.  

To make use of symmetric encryption available in the BC C# API, in basic terms, a cipher engine is
chosen and a compatible  encryption mode is  selected.  Next,  generate a (random) key which is
compatible with the engine selected and finally, if padding is required, choose a type of padding,
again, compatible with the mode and engine. Here is an example of the most basic block cipher
available in the API – which provides a template for other symmetric ciphers. (Other symmetric
cipher examples will follow in the sections below.) 

Example 5 – Random Symmetric Key Generation 
public static ICipherParameters keyParameterGeneration(int keySize)
{
    CipherKeyGenerator keyGen = new CipherKeyGenerator();        
    keyGen.Init(new KeyGenerationParameters(ExValues.cSharpFixedRandom, 256));
    KeyParameter keyParam = keyGen.GenerateKeyParameter();
    return keyParam;
}



The above example will generate a random key of size 256 bits. Alternatively, if you already have a
key, then Example 6 shows how to generate a given fixed key. In almost all cases, you should use
Example 5 above to generate a cryptographic secure key for you rather than substituting your own
set of bytes as a key.

Example 6 – Fixed Symmetric Key Generation 
public static ICipherParameters keyParameterGeneration(byte[] myKey)
{
    ICipherParameters keyParam = new KeyParameter(myKey);        
    return keyParam;
}

Example 7 below shows the common steps required for encryption and decryption. The  mode of
operation is ECB, Electronic Code Book mode and the engine chosen is AES. ECB mode operates
on blocks and the plain text must be padded to align onto a block. The example also demonstrates
how padding is added to the encryption/decryption process. 

Example 7 – ECB Mode Symmetric Cipher
public static byte[] ecbPaddedEncrypt(ICipherParameters keyParam, byte[] plainTextData)
{
    // First choose the "engine", in this case AES 
    IBlockCipher symmetricBlockCipher = new AesEngine();
        
    // Next select the mode compatible with the "engine", in this case we use the simple ECB mode
    IBlockCipherMode symmetricBlockMode = new EcbBlockCipher(symmetricBlockCipher);

    // Finally select a compatible padding, PKCS7 which is the default
    IBlockCipherPadding padding  = new Pkcs7Padding();
                 
    PaddedBufferedBlockCipher ecbCipher = 
        new PaddedBufferedBlockCipher(symmetricBlockMode, padding);

    // apply the mode and engine on the plainTextData
    ecbCipher.Init(true, keyParam);
    int blockSize = ecbCipher.GetBlockSize();        
    byte[] cipherTextData = new byte[ecbCipher.GetOutputSize(plainTextData.Length)];
    int processLength = 
        ecbCipher.ProcessBytes(plainTextData, 0, plainTextData.Length, cipherTextData, 0);
    int finalLength = ecbCipher.DoFinal(cipherTextData, processLength);
    byte[] finalCipherTextData = new byte[cipherTextData.Length - (blockSize - finalLength)];
    Array.Copy(cipherTextData,0,finalCipherTextData,0,finalCipherTextData.Length);

    return finalCipherTextData;
}

public static byte[] ecbPaddedDecrypt(ICipherParameters keyParam, byte[] cipherTextData)
{
    // First choose the "engine", in this case AES 
    IBlockCipher symmetricBlockCipher = new AesEngine();
        
    // Next select the mode compatible with the "engine", in this case we use the simple ECB mode
    IBlockCipherMode symmetricBlockMode = new EcbBlockCipher(symmetricBlockCipher);

    // Finally select a compatible padding, PKCS7 which is the default
    IBlockCipherPadding padding  = new Pkcs7Padding();
                 
    PaddedBufferedBlockCipher ecbCipher = 
        new PaddedBufferedBlockCipher(symmetricBlockMode, padding);



    // apply the mode and engine on the plainTextData
    ecbCipher.Init(false, keyParam);
    int blockSize = ecbCipher.GetBlockSize();
    byte[] plainTextData = new byte[ecbCipher.GetOutputSize(cipherTextData.Length)];
    int processLength  = 
        ecbCipher.ProcessBytes(cipherTextData, 0, cipherTextData.Length, plainTextData, 0);
    int finalLength = ecbCipher.DoFinal(plainTextData, processLength);
    byte[] finalPlainTextData = new byte[plainTextData.Length - (blockSize - finalLength)];
    Array.Copy(plainTextData,0,finalPlainTextData,0,finalPlainTextData.Length);

    return finalPlainTextData;

    }   

3.1 Block Cipher Modes Of Operation
As mentioned above, the BC C# API consists  of various cipher  engines  and various modes of
operation. For simplicity, we can think of a block cipher mode as the process involved on how
different blocks of plain text should be encrypted and decrypted. The table below provides a list of
the most common block cipher modes which are available in the BC C# API.

Mode Algorithm

CBC Cipher Block Chaining, requires an initialisation vector3 (IV).

CCM Counter Cipher Block Chaining Message, requires an initialisation vector. 
Used for AEAD4 algorithms.

CFB Cipher Feed Back – can be used as a streaming cipher, requires an 
initialisation vector.

CTR Counter Mode – can be used as a streaming cipher, requires an initialisation 
vector and a counter.

EAX Encrypt Authenticate Translate – used for AEAD algorithms.

ECB Electronic Code Book

FF1 Format-preserving Feistel-based Encryption Mode

GCM Galois Counter Mode – can be used as a streaming cipher, requires an 
initialisation vector.

OCB Offset codebook mode, requires an initialisation vector and a counter.

OFB Output Feed Back  – can be used as a streaming cipher, requires an 
initialisation vector.

The other part of the encryption/decryption equation is the actual cipher engines which can be used 
by the modes in the table above. The table below provides a list of the most common block cipher 
engines which are available on the BC C# API.

3 An initialization vector (IV) is a known random set of bytes which are fed into the encryption algorithm during 
encryption and decryption. The number of bytes is usually the same as the block size of the engine used. 

4 Authenticated Encryption with Associated Data (AEAD) modes are algorithms which are built to provide 
authentication apart from the encrypted data.



Engine Algorithm Key Size Mode Algorithm

 AES 128, 192, 
256

ECB, CBC, CFB8, CFB128, OFB, CTR, CCM,
GCM, FF1

ARIA 128, 192, 
256

ECB, CBC, CFB8, CFB128, OFB, CTR, CCM,
GCM, FF1

Blowfish 128,256 
(variable)

ECB, CBC, CCM, CFB8, CFB128, CTR, GCM,
OFB

Camellia 128, 192, 
256

CBC, CCM, CFB8, CFB128, CTR, ECB, GCM,
OCB, OFB

Cast5 (CAST-128) 128 ECB, CBC, CCM, CFB8, CFB128, CTR, GCM,
OFB

Cast6 (CAST-256)
128, 160, 
192, 224, 
256

ECB, CBC, CCM, CFB8, CFB128, CTR, GCM,
OFB

GOST 256 ECB, CBC, CCM, CFB8, CFB128, CTR, GCM,
OFB

IDEA 128 ECB, CBC, CCM, CFB8, CFB128, CTR, GCM,
OFB

SEED 128 ECB, CBC, CCM, CFB8, CFB128, CTR, GCM,
OFB

Serpent 129,192,256 ECB, CBC, CCM, CFB8, CFB128, CTR, GCM,
OFB

Skipjack ECB, CBC, CCM, CFB8, CFB128, CTR, GCM,
OFB

Threefish 256, 512, 
1024

ECB, CBC, CCM, CFB8, CFB128, CTR, GCM,
OFB

TripleDES 112, 168 OpenPGPCFB ECB, CBC, CFB8, CFB64, OFB, CTR

Twofish 129,192,256 ECB, CBC, CCM, CFB8, CFB128, CTR, GCM,
OFB

In the mode of operation table above, it was mentioned that certain modes require an Initialisation
Vector (IV). Recall that an IV is a string of bits that is used to produce a unique cipher text when the
same encryption key is used. The IV should be a randomly generated set of bits and length of the IV
is usually the same as that of the block size of the underling encryption engine. Note however, that
the IV is  not  a secret  and needs to be known to both parties – the sender and receiver  of the
encrypted data. Therefore in the BC C# API, the IV and the secret key are stored within the same
object. The example below demonstrates how to generate a key, an IV and how these are stored.



Example 8 – Key and Initialisation Vector Generation
public static ParametersWithIV keyParameterGenerationWithIV(int keySize, byte[] IV)
{
    CipherKeyGenerator keyGen = new CipherKeyGenerator();        
    keyGen.Init(new KeyGenerationParameters(ExValues.cSharpFixedRandom, keySize));
    KeyParameter keyParam = keyGen.GenerateKeyParameter();
    ParametersWithIV keyParamWithIV = new ParametersWithIV(keyParam, IV);

    return keyParamWithIV;
}

Example 9 – CBC Mode Encryption/Decryption
public static byte[] cbcPaddedEncrypt(ICipherParameters keyParamWithIV, byte[] plainTextData)
{
    IBlockCipher symmetricBlockCipher = new AesEngine();       
    IBlockCipherMode symmetricBlockMode = new CbcBlockCipher(symmetricBlockCipher);
    IBlockCipherPadding padding  = new Pkcs7Padding();
        
    PaddedBufferedBlockCipher cbcCipher = 
        new PaddedBufferedBlockCipher(symmetricBlockMode, padding);            
        
    cbcCipher.Init(true, keyParamWithIV);
    int blockSize = cbcCipher.GetBlockSize();        
    byte[] cipherTextData = new byte[cbcCipher.GetOutputSize(plainTextData.Length)];
    int processLength = 
        cbcCipher.ProcessBytes(plainTextData, 0, plainTextData.Length, cipherTextData, 0);
    int finalLength = cbcCipher.DoFinal(cipherTextData, processLength);
    byte[] finalCipherTextData = new byte[cipherTextData.Length - (blockSize - finalLength)];
    Array.Copy(cipherTextData,0, finalCipherTextData,0, finalCipherTextData.Length);

    return finalCipherTextData;
}
       
public static byte[] cbcPaddedDecrypt(ICipherParameters keyParamWithIV, byte[] cipherTextData)
{
    IBlockCipher symmetricBlockCipher = new AesEngine();       
    IBlockCipherMode symmetricBlockMode = new CbcBlockCipher(symmetricBlockCipher);
    IBlockCipherPadding padding  = new Pkcs7Padding();
        
    PaddedBufferedBlockCipher cbcCipher = 
        new PaddedBufferedBlockCipher(symmetricBlockMode, padding);            
                
    cbcCipher.Init(false, keyParamWithIV);
    int blockSize = cbcCipher.GetBlockSize();        
    byte[]  plainTextData = new byte[cbcCipher.GetOutputSize(cipherTextData.Length)];
    int processLength = 
        cbcCipher.ProcessBytes(cipherTextData, 0, cipherTextData.Length, plainTextData, 0);
    int finalLength = cbcCipher.DoFinal(plainTextData, processLength);
    byte[] finalPlainTextData = new byte[plainTextData.Length - (blockSize - finalLength)];
    Array.Copy(plainTextData,0, finalPlainTextData,0, finalPlainTextData.Length);

    return finalPlainTextData;
}



As Examples 7 and 9 show, ciphers which are operated in block mode require padding of some sort.
BC C# API provides the following paddings:

• ZERO – simply adds a string of zero bytes to fill in block, 
• PKCS7 (PKCS5) – the value of each byte is the total number of bytes that are added,
• ISO10126-2 –  last padding byte is the number of padding bytes used, the other bytes can be

random,
• X9.23 – the last  byte  of the padding is  the number of pad bytes,  all  other  bytes of the

padding are zeros, 
• ISO7816-4 (ISO9797-1) – first padding byte is 0x80, other padding bytes are 0s, and
• TBC (Trailing Bit Complement) – if the plain text ends in a 0 bit, all the padding bits will be

1s, else all the padding bits will be 0s.

We mentioned that certain cipher modes can also be operated as a stream where no padding is
required.  The API provides a couple of ways in which a block cipher can be transformed into a
stream cipher. The first example simply uses the API StreamBlockCipher class.

Example 10 – CFB Stream Mode Encryption/Decryption
public static byte[] cfbByteStreamEncrypt(ICipherParameters keyParamWithIV, byte[] plainTextData)
{
    IBlockCipher symmetricBlockCipher = new IdeaEngine();
        
    // Next select the mode compatible with the "engine", in this case we 
    // use CFB mode as a streaming cipher - set the block size to 1 byte
    IBlockCipherMode symmetricBlockMode = new CfbBlockCipher(symmetricBlockCipher, 8);
        
    StreamBlockCipher cfbCipher = new StreamBlockCipher(symmetricBlockMode);            
    cfbCipher.Init(true, keyParamWithIV);
    byte[] cipherTextData = new byte[plainTextData.Length];
        
    // simulate stream
    for (int j = 0; j < plainTextData.Length; j++)
    {
        cipherTextData[j] = cfbCipher.ReturnByte(plainTextData[j]);
    }

    return cipherTextData;
}

public static byte[] cfbByteStreamDecrypt(ICipherParameters keyParamWithIV, byte[] cipherTextData)
{
    IBlockCipher symmetricBlockCipher = new IdeaEngine();
        
    // Next select the mode compatible with the "engine", in this case we 
    // use CFB mode as a streaming cipher - set the block size to 1 byte
    IBlockCipherMode symmetricBlockMode = new CfbBlockCipher(symmetricBlockCipher, 8);
        
    StreamBlockCipher cfbCipher = new StreamBlockCipher(symmetricBlockMode);            
    cfbCipher.Init(false, keyParamWithIV);
    byte[] plainTextData = new byte[cipherTextData.Length];

    // simulate stream
    for (int j = 0; j < plainTextData.Length; j++)
    {
        plainTextData[j] = cfbCipher.ReturnByte(cipherTextData[j]);
    }

    return plainTextData;
}



The next  example uses  the CTR mode.  It  is  also different  from CFB mode above,  in  that  the
generated cipher stream is made by encrypting the nonce (or IV) and counter. This means that the
IV generated must leave sufficient room for a counter. In example below, observe that we have
initialized the cipher with an IV less than the block size of the cipher.. The implementation of this
mode operates on having the last m bytes of the IV as the counter. In the example we have allocated
28 bytes to the IV (which in reality should be random) and  4 bytes to the counter. Thus in this
example the maximum length of a message we could encrypt is 232 blocks (or 237 bytes – since we
are using the Threefish cipher engine with a block size of 256 bits). The BC C# API will throw an
exception if the IV is greater than the cipher block size – note however, that if the IV is the same
size as the cipher block size, then we essentially have the CFB mode again. Finally, in addition,
with this example, we will use the mode without padding but still access the cipher/plain text as a
buffer. 

Example 11 – CTR Mode Without Padding Encryption/Decryption
public static byte[] ctrNoPaddingEncrypt(ICipherParameters keyParamWithIV, byte[] plainTextData)
{
    IBlockCipher symmetricBlockCipher = new ThreefishEngine(256);
    IBlockCipherMode symmetricBlockMode = new KCtrBlockCipher(symmetricBlockCipher);
    BufferedBlockCipher ctrCipher = new BufferedBlockCipher(symmetricBlockMode);            
        
    ctrCipher.Init(true, keyParamWithIV);
    int blockSize = ctrCipher.GetBlockSize();        
    byte[]  cipherTextData = new byte[ctrCipher.GetOutputSize(plainTextData.Length)];
    int processLength = 
        ctrCipher.ProcessBytes(plainTextData, 0, plainTextData.Length, cipherTextData, 0);

    int finalLength = ctrCipher.DoFinal(cipherTextData, processLength);
    byte[] finalCipherTextData = new byte[cipherTextData.Length - (blockSize - finalLength)];
    Array.Copy(cipherTextData,0, finalCipherTextData,0 ,finalCipherTextData.Length);

    return cipherTextData;
}

public static byte[] ctrNoPaddingDecrypt(ICipherParameters keyParamWithIV, byte[] cipherTextData)
{
    IBlockCipher symmetricBlockCipher = new ThreefishEngine(256);
    IBlockCipherMode symmetricBlockMode = new KCtrBlockCipher(symmetricBlockCipher);
    BufferedBlockCipher ctrCipher = new BufferedBlockCipher(symmetricBlockMode);            
        
    ctrCipher.Init(false, keyParamWithIV);
    int blockSize = ctrCipher.GetBlockSize();        
    byte[]  plainTextData = new byte[ctrCipher.GetOutputSize(cipherTextData.Length)];
    int processLength = 
        ctrCipher.ProcessBytes(cipherTextData, 0, cipherTextData.Length, plainTextData, 0);

    int finalLength = ctrCipher.DoFinal(plainTextData, processLength);
    byte[] finalPlainTextData = new byte[plainTextData.Length - (blockSize - finalLength)];
    Array.Copy(plainTextData,0, finalPlainTextData,0, finalPlainTextData.Length);

    return plainTextData;
    }



The final block cipher example we present is that of an  Authenticated Encryption with Associated
Data (AEAD) mode. Both the GCM (Galois/Counter Mode) and CCM  (Counter with Cipher block
chaining message authentication Mode or counter with CBC-MAC) can be used with various cipher
engines. Essentially in this mode along with an Initialisation Vector, we add some plain text data
which can be used to “authenticate” the encrypted data which has been received. The plain text data
is (essentially) woven into the cipher and a tag is appended to the encrypted data which is to provide
this authentication.

It should be noted that apart from CCM the GCM modes, the EAX mode can also be used for
authentication. EAX mode can be used as a stream, while both CCM and GCM can only be used in
block mode. Finally, it is up your requirements to choose an appropriate length of the tag size (or
mac size as  used in  the BC C# API) – usually  the size of  the underlying cipher  block size is
desirable. (However, 4, 6, 8, 10, 12, 14 or 16 bytes can be used.) 
 

Example 12 – CCM AEAD Mode Without Padding Encryption/Decryption
public static byte[] ccmAEADNoPaddingEncrypt(KeyParameter keyParam, byte[] plainTextData)
{
    IBlockCipher symmetricBlockCipher = new AesEngine();        
    int macSize = 8*symmetricBlockCipher.GetBlockSize();
    byte[] nonce = new byte[12];
    byte[] associatedText = ExValues.additionalAuthenticatedDataA;
    Array.Copy(ExValues.sampleIVnonce, nonce, nonce.Length);
    AeadParameters keyParamAead = new AeadParameters(keyParam, macSize, nonce, associatedText);

    CcmBlockCipher cipherMode = new CcmBlockCipher(symmetricBlockCipher);        
    cipherMode.Init(true,keyParamAead);
    cipherMode.ProcessBytes(plainTextData, 0, plainTextData.Length, null, 0);
        
     int outputSize = cipherMode.GetOutputSize(0);
     byte[]  cipherTextData = new byte[outputSize];
     cipherMode.DoFinal(cipherTextData, 0);

     return cipherTextData;
}

public static byte[] ccmAEADNoPaddingDecrypt(KeyParameter keyParam, byte[] cipherTextData)
{
    IBlockCipher symmetricBlockCipher = new AesEngine();        
    int macSize = 8*symmetricBlockCipher.GetBlockSize();
    byte[] nonce = new byte[12];
    byte[] associatedText = ExValues.additionalAuthenticatedDataA;
    Array.Copy(ExValues.sampleIVnonce, nonce, nonce.Length);
    AeadParameters keyParamAead = new AeadParameters(keyParam, macSize, nonce, associatedText);

    CcmBlockCipher cipherMode = new CcmBlockCipher(symmetricBlockCipher);        
    cipherMode.Init(false,keyParamAead);
    cipherMode.ProcessBytes(cipherTextData, 0, cipherTextData.Length, null, 0);
        
    int outputSize = cipherMode.GetOutputSize(0);
    byte[]  plainTextData = new byte[outputSize];
    cipherMode.DoFinal(plainTextData , 0);

    return plainTextData;
}



Finally before we move onto dedicated stream ciphers, lets summarise the the BC C# API for block
ciphers in this section:

• Block ciphers comprise of an engine and mode.
• Some modes require padding and others can be used as a stream cipher.
• Some modes require an initialisation vector (or nonce) and some modes can have associated

data for useful for authentication.

3.2 Stream Ciphers

The table below provides a list of the most common stream cipher “engines” which are available in
the BC C# API.

Engine Algorithm Key Size Notes

ChaCha 128, 256 Certified eSTREAM5. Based on Salsa20 and therefore 
requires a 64 bit initialisation vector.

HC128 128 Certified eSTREAM. Requires a 128 bit initialisation vector.

HC256 256 Requires 256 bit initialisation vector.

Salsa20 128, 256 Certified eSTREAM. Requires a 64 bit initialisation vector.

XSalsa20 256 Requires a 192 bit initialisation vector.

As previously mentioned, there are no modes which we need to consider when we are using one of
the stream ciphers in the table above.  The examples below demonstrate the usage of the API for
these cipher. In the example below we have used a 128 bit key, however a 256 bit key can used as
the table above indicates.

Example 13 – ChaCha Stream Cipher Encryption/Decryption
public static byte[] chachaStreamEncrypt(ICipherParameters keyParamWithIV, byte[] plainTextData)
{
    IStreamCipher cipher = new ChaChaEngine();
    cipher.Init(true, keyParamWithIV);

    byte[] cipherTextData = new byte[plainTextData.Length];
        
    // simulate stream
    for (int j = 0; j < plainTextData.Length; j++)
    {
        cipherTextData[j] = cipher.ReturnByte(plainTextData[j]);
    }
   
    return cipherTextData;        
}

    
Notice below that there is no difference between the encryption method and the decryption method
– since the cipher engine is effectively using XOR to encrypt and decrypt.

5 European Union cryptographic validation certification program.



public static byte[] chachaStreamDecrypt(ICipherParameters keyParamWithIV, byte[] cipherTextData)
{
    IStreamCipher cipher = new ChaChaEngine();
    cipher.Init(false, keyParamWithIV);

    byte[] plainTextData = new byte[cipherTextData .Length];
        
    // simulate stream
    for (int j = 0; j < cipherTextData.Length; j++)
    {
        plainTextData[j] = cipher.ReturnByte(cipherTextData[j]);
    }
   
    return plainTextData;        
}

Note that the Salsa20 implementation is  essentially that of the ChaCha cipher – so no example is
required. In the next example we will use the stream cipher HC128.  

Example 14 – HC128 Stream Cipher Encryption/Decryption
public static byte[] h128StreamEncrypt(ICipherParameters keyParamWithIV, byte[] plainTextData)
{
    IStreamCipher cipher = new ChaChaEngine();
    cipher.Init(true, keyParamWithIV);

    byte[] cipherTextData = new byte[plainTextData.Length];
        
    // simulate stream
    for (int j = 0; j < plainTextData.Length; j++)
    {
        cipherTextData[j] = cipher.ReturnByte(plainTextData[j]);
    }
   
    return cipherTextData;        
}

public static byte[] h128StreamDecrypt(ICipherParameters keyParamWithIV, byte[] cipherTextData)
{
    IStreamCipher cipher = new ChaChaEngine();
    cipher.Init(false, keyParamWithIV);

    byte[] plainTextData = new byte[cipherTextData .Length];
        
    // simulate stream
    for (int j = 0; j < cipherTextData.Length; j++)
    {
        plainTextData[j] = cipher.ReturnByte(cipherTextData[j]);
    }
   
    return plainTextData;        
}

3.3 AEAD Ciphers
In this section we look at two ciphers which are especially designed for AEAD. Recall that an
AEAD cipher is composed of two parts: AE which stands for Authenticated Encryption – this part
is used to achieve protection against message data modification and message data injection during
the transport of the cipher text. However, this alone does not stop the so called “reply” attacks. The



AD part stands for Associated Data – which is designed to minimise replay type attacks. Together
we have a  AEAD cipher  which provides  authentication as  well  as additional  support  for  other
cryptographic attacks. 

One of the most common block cipher mode for AEAD is Galois Counter Mode (GCM) for AEAD.
In basic terms GCM combines CTR mode for encryption and polynomial over a finite field (say 2n a
so called Galois field) for the generation of the MAC. 

Example 15 – GCM AEAD Mode Encryption/Decryption
public static byte[] gcmAEADEncrypt(KeyParameter keyParam, byte[] plainTextData)
{
    IBlockCipher cipher = new AesEngine();        
    int macSize = 8*cipher.GetBlockSize();
    byte[] nonce = ExValues.sampleIVnonce;
    byte[] associatedText = ExValues.additionalAuthenticatedDataA;
    AeadParameters keyParamAead = new AeadParameters(keyParam, macSize, nonce, associatedText);

    GcmBlockCipher cipherMode = new GcmBlockCipher(cipher);        
    cipherMode.Init(true,keyParamAead);
        
    int outputSize = cipherMode.GetOutputSize(plainTextData.Length);
    byte[]  cipherTextData = new byte[outputSize];
    int result = cipherMode.ProcessBytes(plainTextData, 0, plainTextData.Length, cipherTextData, 0);
    cipherMode.DoFinal(cipherTextData, result);

    return cipherTextData;
}

public static byte[] gcmAEADDecrypt(KeyParameter keyParam, byte[] cipherTextData)
{
    IBlockCipher cipher = new AesEngine();        
    int macSize = 8*cipher.GetBlockSize();
    byte[] nonce = ExValues.sampleIVnonce;
    byte[] associatedText = ExValues.additionalAuthenticatedDataA;
    AeadParameters keyParamAead = new AeadParameters(keyParam, macSize, nonce, associatedText);

    GcmBlockCipher cipherMode = new GcmBlockCipher(cipher);        
    cipherMode.Init(false,keyParamAead);
        
    int outputSize = cipherMode.GetOutputSize(cipherTextData.Length);
    byte[]  plainTextData = new byte[outputSize];
    int result = cipherMode.ProcessBytes(cipherTextData, 0, cipherTextData.Length, 
                                         plainTextData, 0);
    cipherMode.DoFinal(plainTextData, result);

    return plainTextData;
}

The BC C# API also provides dedicated ciphers for AEAD. The two we consider are ASCON and
ChaCha20Poly1305.  Note that ASCON has recently been selected as a standard for lightweight
cryptography  in  the  NIST  Lightweight  Cryptography  competition.  The  ChaCha20Poly1305  is
essentially the stream cipher we considered in the Section 3.2 above, combined with the Poly1305
family of polynomial hash functions.

The inputs to the ASCON cipher are:
• A key of maximum size 128 bits. A key of 128 bits is recommended however.



• An IV (or nonce) which is also 128 bits.
• Your Associated Data.

The MAC (or Tag) size depends on the key size and the API provides a method to determine this as
shown in the example below.

Example 16 – ASCON AEAD Encryption/Decryption
public static byte[] asconAEADEncrypt(KeyParameter keyParam, byte[] plainTextData)
{
    AsconEngine cipher = new AsconEngine(AsconEngine.AsconParameters.ascon128a);        
    int macSize = 8*cipher.GetKeyBytesSize();
    byte[] nonce = new byte[cipher.GetIVBytesSize()];
    Array.Copy(ExValues.sampleIVnonce, nonce, cipher.GetIVBytesSize());
    byte[] associatedText = ExValues.additionalAuthenticatedDataA;
    AeadParameters keyParamAead = new AeadParameters(keyParam, macSize,nonce, associatedText);      

    cipher.Init(true,keyParamAead);
    int outputSize = cipher.GetOutputSize(plainTextData.Length);
    byte[]  cipherTextData = new byte[outputSize];        
    int result = cipher.ProcessBytes(plainTextData, 0, plainTextData.Length, cipherTextData, 0);
    cipher.DoFinal(cipherTextData,result);

    return cipherTextData;
}
  
public static byte[] asconAEADDecrypt(KeyParameter keyParam, byte[] cipherTextData)
{
    AsconEngine cipher = new AsconEngine(AsconEngine.AsconParameters.ascon128a);        
    int macSize = 8*cipher.GetKeyBytesSize();
    byte[] nonce = new byte[cipher.GetIVBytesSize()];
    Array.Copy(ExValues.sampleIVnonce, nonce, cipher.GetIVBytesSize());
    byte[] associatedText = ExValues.additionalAuthenticatedDataA;
    AeadParameters keyParamAead = new AeadParameters(keyParam, macSize,nonce, associatedText);      

    cipher.Init(false,keyParamAead);
    int outputSize = cipher.GetOutputSize(cipherTextData.Length);
    byte[]  plainTextData = new byte[outputSize];        
    int result = cipher.ProcessBytes(cipherTextData, 0, cipherTextData.Length, plainTextData, 0);
    cipher.DoFinal(plainTextData,result);

    return plainTextData;
}    

The inputs to ChaCha20Poly1305 are:
• A 256 bit key.
• An IV (or nonce) whose size is a fixed 96 bits (the remaining 32 bits are used as a counter).
• Your Associated Data.

The MAC (or Tag) size is fixed at 128 bits.

Example 17 – ChaCha20Poly1305 AEAD Encryption/Decryption
public static byte[] chacha20poly1305AEADEncrypt(KeyParameter keyParam, byte[] plainTextData)
{
    ChaCha20Poly1305 cipher = new ChaCha20Poly1305();        
    int macSize = 128;
    byte[] nonce = new byte[12];
    Array.Copy(ExValues.sampleIVnonce, nonce, 12);
    byte[] associatedText = ExValues.additionalAuthenticatedDataA;



    AeadParameters keyParamAead = new AeadParameters(keyParam, macSize,nonce, associatedText);      
        
    cipher.Init(true,keyParamAead);
        
    int outputSize = cipher.GetOutputSize(plainTextData.Length);
    byte[]  cipherTextData = new byte[outputSize];        
    int result = cipher.ProcessBytes(plainTextData, 0, plainTextData.Length, cipherTextData, 0);
    cipher.DoFinal(cipherTextData,result);

    return cipherTextData;
}
  
public static byte[] chacha20poly1305AEADDecrypt(KeyParameter keyParam, byte[] cipherTextData)
{
    ChaCha20Poly1305 cipher = new ChaCha20Poly1305();        
    int macSize = 128;
    byte[] nonce = new byte[12];
    Array.Copy(ExValues.sampleIVnonce, nonce, 12);
    byte[] associatedText = ExValues.additionalAuthenticatedDataA;
    AeadParameters keyParamAead = new AeadParameters(keyParam, macSize,nonce, associatedText);      

    cipher.Init(false,keyParamAead);

    int outputSize = cipher.GetOutputSize(cipherTextData.Length);
    byte[]  plainTextData = new byte[outputSize];        
    int result = cipher.ProcessBytes(cipherTextData, 0 , cipherTextData.Length, plainTextData, 0);
    cipher.DoFinal(plainTextData,result);

    return plainTextData;
} 

3.4 Format Preserving Encryption using AES
In this final section of symmetric ciphers we describe a family of Format Preserving Encryption
(FPE)  algorithms.  FPE is  an  encryption  method which  attempts  to  preserve  the  format  of  the
plaintext.  Such  encryption  is  used  mainly  for  credit  card  numbers  and  other  identifiable  data
associated with a person. FPE has three different modes of operation: FF1, FF2, and FF3. Note that
FF2 was not an approved mode for FPE by NIST and as such is not part of the BC C# API. Further,
FF3 was found to have a flaw on the level of security and as such FF3 has been replaced with
FF3-1. Both FF1 and FF3-1 (FF3_1) are implemented and available in the API.

FPE works on an input alphabet and produces encrypted strings in the same alphabet. From the
algorithm's point of view the alphabet is just a set of indexes, starting at zero and going up to the
number of characters in the alphabet. The size of the alphabet is referred to as the radix. The second
thing which is needed is a tweak value, which is used to improve the security of the algorithm. The
tweak value does not need to be kept secret. Also note that in the example below we have used a
tweak  whose  size  is  56  bits  –  this  is  the  current  fixed  length  as  recommended  in  the  NIST
SP800-38r1 document and is the only supported tweak length available. (Appendix C in the same
NIST document provides a nice summary on the use of tweaks.)

As mentioned above, A FPE cipher engine requires an alphabet. In our case an alphabet is simply an
array of characters.  Clearly the plaintext which you wish to encrypt must  consist  of characters
obtained from your alphabet. Note that the BC C# API will produced an exception if there are
characters within your plaintext which are not in the alphabet.



Example 18 – FF3-1 FPE Mode Encryption/Decryption
public static char[] ff3_1FPEEncrypt(KeyParameter keyParam, char[] alphabet, char[] plainTextData)
{
    // Create a mapper from our alphabet to indexs
    IAlphabetMapper alphabetMapper = new BasicAlphabetMapper(alphabet);

    // Create FpeParameter object
    byte[] tweak = ExValues.sampleTweak;
    FpeParameters fpeKeyParam = new FpeParameters(keyParam, alphabetMapper.Radix, tweak);

    IBlockCipher cipher = new AesEngine();        
    FpeFf3_1Engine cipherMode = new FpeFf3_1Engine(cipher);        
    cipherMode.Init(true,fpeKeyParam);
        
    byte[] cipherTextData = new byte[plainTextData.Length];
    byte[] convertedPlainTextData = alphabetMapper.ConvertToIndexes(plainTextData);
        
    int result = cipherMode.ProcessBlock(convertedPlainTextData, 0, 
                    convertedPlainTextData.Length, cipherTextData, 0);

    char[] convertedCipherTextData = alphabetMapper.ConvertToChars(cipherTextData);

    return convertedCipherTextData;
}

public static char[] ff3_1FPEDecrypt(KeyParameter keyParam, char[] alphabet, char[] cipherTextData)
{
    IAlphabetMapper alphabetMapper = new BasicAlphabetMapper(alphabet);

    byte[] tweak = ExValues.sampleTweak;
    FpeParameters fpeKeyParam = new FpeParameters(keyParam, alphabetMapper.Radix, tweak);

    IBlockCipher cipher = new AesEngine();        
    FpeFf3_1Engine cipherMode = new FpeFf3_1Engine(cipher);        
    cipherMode.Init(false,fpeKeyParam);
        
    byte[] plainTextData = new byte[cipherTextData.Length];
    byte[] convertedCipherTextData = alphabetMapper.ConvertToIndexes(cipherTextData);
        
    int result = cipherMode.ProcessBlock(convertedCipherTextData, 0, 
                    convertedCipherTextData.Length, plainTextData, 0);

    char[] convertedPlainTextData = alphabetMapper.ConvertToChars(plainTextData);

    return convertedPlainTextData;
}



4 Key Agreement and Exchange Algorithms
4.1 What Happended To the Asymmetric Ciphers?
Recall that asymmetric ciphers (or public key encryption) consists of a key pair say  and ,
where   represents the private part of the key pair and   represents the publicly available
part. Note that, it is not given a priori which of  or  are to be used to encrypt a plaintext
message. This is only one of the issues associated with asymmetric ciphers used for encryption of
large blocks of data – there are others as we explain below. Let   denote the key which will be
used for encryption (that is,  could be either  or ) and let  denote the decryption key.
In very simple terms, given the plain text   and the encryption, decryption  functions   and

 respectively,  then we obtain   the ciphertext and  . Here we observe
another issue, that while , in general we do not have:

   for a plaintext message .
(This property holds for RSA asymmetric ciphers, however it need not hold for encryption based on
elliptic curves.) Other issues arise due to the fact that if   is used for encryption, then this
provides privacy but not authenticity – whereas if  is used for encryption, then authenticity is
guaranteed, but not privacy (this is the basis of digital  signatures).  However, the biggest issues
when using asymmetric ciphers for encryption of large amounts of data is that:

• The underlying mathematics in such cryptographic systems means that the plain text data
must be mapped to size of the key. Elliptic curves, for example do not have an underlying
encryption scheme and an additional bijective function must be added.

• Additionally,  asymmetric  ciphers  are  significantly  slower  than  symmetric  ciphers  –  for
example, RSA encryption (which could in theory be used in ECB mode) will execute 1000s
of times slower than when using AES in the same mode.

The limitations in the use of asymmetric ciphers are overcome by the use of hybrid encryption
schemes.  Hybrid encryption,  usually,  consists  of using an asymmetric key pair  to  generate  and
exchange a symmetric key which can then be used to efficiently encrypt data over an unsecured
channel. Normally such symmetric keys are short lived (ephemeral). 

Below are some terms which will be useful in the examples which follow:
• Key Exchange – is a method, process or protocol which allows two (or sometimes more)

parties to agree on a secret key, enabling these parties to send and receive cryptographically
secure data.

• Key Agreement – is a chosen Key Exchange method to share the generated secret key. For
example, one of the most common is the Diffie–Hellman key agreement.

• Key Encapsulation Mechanisms (KEM) – is a specific Key Agreement using asymmetric
encryption, where (in simple terms) the public key is used to encrypt the symmetric key and
the private key is used to decrypt the symmetric key for use in data exchange.

• Key Derivation Function (KDF) – is a function (or algorithm) which takes as input some
not necessarily cryptographically random strings and outputs cryptographically strong secret
keys.



• Key-encryption key (KEK) – generate a (symmetric) key using a KDF.
• Pseudorandom function (PRF) – according to NIST, a PRF is a function that can be used to

generate  output  from  a  random  seed  and  a  data  variable,  such  that  the  output  is
computationally indistinguishable from truly random output. Actually KDFs and PRFs are
closely related in that a KDF will make use of a PRF.

Having defined the terms we can provide some examples of key agreements.

4.2 Diffie-Hellman Key Agreement
The  Diffie-Hellman  (DH)  Key  agreement  algorithm  requires  the  generation  of  the  domain
parameters set  , where   is a (sufficiently) large prime,   is either   or a large prime
divisor of  and  is a generator for the cyclic subgroup of order  of the multiplicative group of
the finite field . The set  is public information.  These domain parameters for DH are very
(CPU time) expensive to generate – depending on your hardware and size of  (or alternatively the
size of ), this could take from several minutes to several hours!  

Note that there are various restrictions on the values of   which are required for cryptographic
security. Such cryptographic primes are referred to as  strong primes. There is a subset of strong
primes known as safe primes. These safe primes are of the form  prime and . (Primes of
this form are known as Sophie Germain primes.) A list of pre-defined these safe primes are given
RFC7919 and RFC3526.

The example below demonstrates how the BC C# API can be used generate a pair of safe primes. 

Example 19 – Generating DH Finite Field Parameters
public static DHParameters generateDHParameters(int size)
{
    DHParametersGenerator pGen = new DHParametersGenerator();
    pGen.Init(size, 10, ExValues.cSharpFixedRandom);  
    return pGen.GenerateParameters();
}

The parameters passed to the method above 
pGen.Init(int size, int certainty, SecureRandom random) are:

size – this is the bit size of the prime , choose a small value for testing, 512 bits will suffice.
certainty – is (related to) the number of iterations of the  Miller-Rabin test for testing primality. In
the paper, Rabin, Michael O. (1980), “Probabilistic algorithm for testing primality”, it was shown
that the after  iterations, the probability that it would fail the test for primality is at least .
Thus after  iterations if the test did not fail, one could be confident that the integer  is prime.
random – this allows us to generate a random integer  and test it for primality.

Having provided the example above, the next statement is surprising:  “Don’t generate your own
field parameters”. The BC C# API provides are list of pre-defined safe primes which can be used
directly.  The example below provides an method of how an asymmetric key pair can be generated
easily with the provided safe primes and with a security strength of approximately 275 bits. Please
read  the  appropriate  sections  in  the  RFC7919  and  RFC3526  documentation  to  determine  the
security strength you require. 



Example 20 – Diffie-Hellman Key Pair Generation
public static AsymmetricCipherKeyPair generateDHKeyPair(DHParameters dhParams)
{
    DHParameters dhParams = DHStandardGroups.rfc7919_ffdhe3072;

    DHKeyGenerationParameters dhKeyGenParams =     
       new DHKeyGenerationParameters(ExValues.cSharpFixedRandom, dhParams);
    DHKeyPairGenerator dhKeyPairGen = new DHKeyPairGenerator();

    dhKeyPairGen.Init(dhKeyGenParams);
    AsymmetricCipherKeyPair dhKeyPair = dhKeyPairGen.GenerateKeyPair();
   
    return dhKeyPair;
}   

All safe primes listed in  RFC7919 and RFC3526 are provided in the class  DHStandardGroups. 

In the simplest of cases, the DH Key agreement consists of two parties exchanging public keys.
Party   generates their key pair  and party  generates theirs . Recall that

 is a random element of  (or ),  say, and that  is  (similarly for party B). The
basic key exchange is then simply:

Party A generates  
and that 

Part B generates .
Example 21 below shows how to organise  a  basic  DH key agreement.  Note that,  this  type of
exchange is not secure if you are re-using the same DH key pairs and in fact note that there is no
authentication involved. 

Example 21 – Basic DH Key Agreement
public static BigInteger partyABasicAgreement(DHPrivateKeyParameters privateKeyPartyA,
                                              DHPublicKeyParameters publicKeyPartyB)
{
    DHBasicAgreement keyAgreement = new DHBasicAgreement();
    keyAgreement.Init(privateKeyPartyA);
    BigInteger secret = keyAgreement.CalculateAgreement(publicKeyPartyB);
        
    return secret;
}

public static BigInteger partyBBasicAgreement(DHPrivateKeyParameters privateKeyPartyB,
                                              DHPublicKeyParameters publicKeyPartyA)
{
    DHBasicAgreement keyAgreement = new DHBasicAgreement();
    keyAgreement.Init(privateKeyPartyB);
    BigInteger secret = keyAgreement.CalculateAgreement(publicKeyPartyA);
        
    return secret;
}

A better or more secure method of using the DH key agreement is with the Matsumoto, Takashima,
Imai  MTI/A0 key  agreement  scheme.  (Note  that  there  are  variations  of  this  scheme  MTI/B0,
MTI/C0 and MTI/C1 – however the BC C# API only provides the MTI/A0 variation.) Why is this
key agreement scheme better? Essentially it is a two phase type of the basic key agreement as given
in Example 21 above. The main security it offers is that the first exchange of the public keys should



be authenticated in some manner. After that the second and subsequent exchanges are made using a
randomly generated asymmetric key pair. (Note that, MTI and a related protocol MQV are used for
authentication and are usually certificate based – to establish the “owner” of the public keys. The
example below provides an outline on generating the secret agreement only and does not address
the authenticity.)

Example 22 – MTI/A0 DH Key Agreement
public static BigInteger[] MTIA0Agreement(DHParameters dhParams)
{
    AsymmetricCipherKeyPair dhStaticKeyPairPartyA = generateDHKeyPair(dhParams);
    AsymmetricCipherKeyPair dhStaticKeyPairPartyB = generateDHKeyPair(dhParams);

    // Party A Generates an ephemeral key pair sending it to Party B
    DHAgreement keyAgreementPartyA = new DHAgreement();
    keyAgreementPartyA.Init((DHPrivateKeyParameters)dhStaticKeyPairPartyA.Private);
    BigInteger dhEphemeralPublicKeyA = keyAgreementPartyA.CalculateMessage();

    // Party B Generates an ephemeral key pair sending it to Party A
    DHAgreement keyAgreementPartyB = new DHAgreement();
    keyAgreementPartyB.Init((DHPrivateKeyParameters)dhStaticKeyPairPartyB.Private);
    BigInteger dhEphemeralPublicKeyB = keyAgreementPartyB.CalculateMessage();
        
    BigInteger secretPartyA = keyAgreementPartyA.CalculateAgreement(
            (DHPublicKeyParameters)dhStaticKeyPairPartyB.Public, dhEphemeralPublicKeyB);
                
    BigInteger secretPartyB = keyAgreementPartyB.CalculateAgreement(
            (DHPublicKeyParameters)dhStaticKeyPairPartyA.Public, dhEphemeralPublicKeyA);
            
    return  new BigInteger[] {secretPartyA, secretPartyB};
}

 

4.3 Elliptic Curve Diffie-Hellman Key Agreement
The Diffie-Hellman protocol can also be used with Elliptic Curves. The points  on an elliptic
curve defined over a finite field form an abelian group. If this group has prime order, then it is a
cyclic group and all points  satisfying the equation of the curve lie in the group with  in the
field – in this case we say it has co-factor . (Recall that a non-trivial finite group  has no proper
subgroups except the trivial groups if and only if its order is prime.)  If the elliptic curve group has
order  where  is a large prime, then we apply the Diffie-Hellman protocol to the subgroup of
order  – in this case we say the curve has a co-factor of . Moreover, not every point that satisfies
the equation of the curve lies in the subgroup. However, any such point multiplied by  will lie in
the subgroup. Thus in this case where the co-factor is not , the Diffie-Hellman protocol is slightly
more complicated. A formulation based on incorporating the curve's co-factor is actually the one
described by NIST SP 800-56A which also details the use of Elliptic Curves with Diffie-Hellman as
well as the finite field method. The variant incorporating the curve's co-factor is known as Elliptic
Curve Co-factor Diffie-Hellman or ECCDH for short.

Elliptic curves (used for cryptography) come in various flavours. The main two types of interest are 
• elliptic curves over a finite prime field  (or written as ) where  is a prime, and
• elliptic curves over a binary finite field .



For curves over a prime field, the form of the elliptic curve used is  ,
where  and . The domain parameters for such curves are given as

, 
where   is the prime used for generating  ,   is the co-factor,   is the order of the cyclic
subgroup used (so that the order of the cyclic group generated by the elliptic curve is ), 
is a description of the curve, for example “Weierstrass curve”,  and  are the coefficients defining
the curve and  is a point on the curve which generates all points in the cyclic subgroup. There is
an optional parameter  a random number which provides a seed for generating your own
coefficients  and a value  to ensure that  in the above curve has a unique solution. This means
that defining your own elliptic curve is task intensive. The example below demonstrates how to
construct a set of domain parameters from scratch for the Curve-ID: brainpoolP160r1. We have
taken the parameters from RFC5639.

Example 23 – Generating EC GF (p) Parameters Directly
public static ECDomainParameters ecDomainParametersDirect()
{
    // Generating EC brainpoolP160r1 parameters   
    BigInteger p = new BigInteger(1,Hex.DecodeStrict("E95E4A5F737059DC60DFC7AD95B3D8139515620F"));
    BigInteger a = new BigInteger(1,Hex.DecodeStrict("340E7BE2A280EB74E2BE61BADA745D97E8F7C300"));
    BigInteger b = new BigInteger(1,Hex.DecodeStrict("1E589A8595423412134FAA2DBDEC95C8D8675E58"));
    BigInteger n = new BigInteger(1,Hex.DecodeStrict("E95E4A5F737059DC60DF5991D45029409E60FC09"));
    BigInteger h = BigInteger.One;

    BigInteger generatorX = 
        new BigInteger(1,Hex.DecodeStrict("BED5AF16EA3F6A4F62938C4631EB5AF7BDBCDBC3"));
    BigInteger generatorY = 
        new BigInteger(1,Hex.DecodeStrict("1667CB477A1A8EC338F94741669C976316DA6321"));

    ECCurve curve = new FpCurve(p, a, b, n, h);
    ECPoint generatorPoint = curve.CreatePoint(generatorX, generatorY);

    return new ECDomainParameters(curve, generatorPoint, n, h);
}

Unless  required  you  would  not  normally  generate  directly  your  own  elliptic  curve  domain
parameters. (In fact, you should never attempt to define your own elliptic curves for cryptographic
use – there are many pitfalls and security considerations – where possible always use pre-defined
curves and pre-defined curve parameters.) The BC C# API provides a list of known elliptic curves
for cryptgraphic use. Appendix A.1 lists all elliptic curves over a finite prime field . The example
below demonstrates how using the internal ID of the curve we can generate the same set of domain
parameters as that given in the example above.

Example 24 – Generating Built In EC GF (p) Parameters
public static ECDomainParameters ecBuiltInDomainParameters()
{
    X9ECParameters ecParams = ECNamedCurveTable.GetByName("brainpoolp160r1");
    return new ECDomainParameters(
        ecParams.Curve, ecParams.G, ecParams.N, ecParams.H, ecParams.GetSeed() ); 
}



Elliptic curves over a binary field have the Weierstrass form ,
where  and . The field  is viewed as a vector space of polynomials over
the field . Thus an arbitrary element  can be written as 

,
with  . When performing arithmetic on the elliptic curve over  , then we must
reduce the values obtained from the calculation to fit back into  . To do this we take the
result of a calculation modulo an irreducible polynomial. For efficiency, two types of irreducible
polynomials are used: Trinomials of the form , and Pentanomials (if a trinomial does
not exist) of the form . The domain parameters for such binary curves
are given as

, 
where  is the integer in the field ,   is the co-factor,  is the order of the cyclic subgroup
used (so that the order of the cyclic group generated by the elliptic curve is  ),   is a
description of the curve, for example “Weierstrass curve”,  and  are the coefficients defining the
curve and  is a point on the curve which generates all points in the cyclic subgroup,  is the
trinomial or pentanomial for the arithmetic reductions.  Note that,  the point   can come in two
different “flavours”: either it is given in the polynomial basis (the usual basis of a vector space in
elementary Linear Algebra) or in a normal basis (which requires a root of unity of ) which
makes certain arithmetic operations on the elliptic curve group easier – in particular the squaring
operation. In this document the generating point  for elliptic curves over  are given in the
polynomial basis. (In fact the BC C# API currently does not support normal bases.)

The example below demonstrates how to construct a set of domain parameters from scratch for the
Curve-ID: sect283k1, which is a 283-bit binary field Weierstrass curve (also known as K-283 curve
or the  ansit283k1 curve).

Example 25 – Generating Binary EC Parameters Directly
public static ECDomainParameters ecBinaryDomainParametersDirect()
{
    //Generating Binary EC sect283k1
    int m  = 283;
    int k1 = 5;
    int k2 = 7;
    int k3 = 12;
    BigInteger a = BigInteger.Zero;
    BigInteger b = BigInteger.One;
    BigInteger h = BigInteger.Four;

    BigInteger n =
       new BigInteger("1ffffffffffffffffffffffffffffffffffe9ae2ed07577265dff7f94451e061e163c61",16);

    BigInteger generatorX =
       new BigInteger("503213f78ca44883f1a3b8162f188e553cd265f23c1567a16876913b0c2ac2458492836",16);
    BigInteger generatorY =
       new BigInteger("1ccda380f1c9e318d90f95d07e5426fe87e45c0e8184698e45962364e34116177dd2259",16);

    ECCurve curve = new F2mCurve(m, k1, k2, k3, a, b, n, h);
    ECPoint generatorPoint = curve.CreatePoint(generatorX, generatorY);
        
    return new ECDomainParameters(curve, generatorPoint, n, h);



}

As with the comments made for curves over a prime field, you would not normally generate directly
your own elliptic curve domain parameters.  The BC C# API provides a list of known binary elliptic
curves  for  cryptographic  use.  Appendix A.2  lists  all  elliptic  curves  over   which  are
available in the BC C# API. The example below demonstrates how using the internal ID of the
curve we can generate the same set of domain parameters as that given in the example above.

Example 26 – Generating Built In Binary EC Parameters
public static ECDomainParameters ecBuiltInBinaryDomainParameters()
{
    X9ECParameters ecParams = ECNamedCurveTable.GetByName("K-283");

    return new ECDomainParameters(
       ecParams.Curve, ecParams.G, ecParams.N, ecParams.H, ecParams.GetSeed()); 
}

This chapter was discussing key agreements, therefore, once we have our elliptic curve parameters
we are ready to generate a pair of asymmetric keys. Generating keys and key agreement is similar to
that described above for DH as the following examples demonstrate.

Example 27 – EC Diffie-Hellman Key Pair Generation
public static AsymmetricCipherKeyPair generateECDHKeyPair(ECDomainParameters ecParams)
{
    ECKeyGenerationParameters ecKeyGenParams = 
       new ECKeyGenerationParameters(ecParams, ExValues.cSharpFixedRandom);
    ECKeyPairGenerator ecKeyPairGen = new ECKeyPairGenerator();
    ecKeyPairGen.Init(ecKeyGenParams);
    AsymmetricCipherKeyPair ecKeyPair = ecKeyPairGen.GenerateKeyPair();

    return ecKeyPair;
}  

Example 28 – EC Diffie-Hellman Key Agreement
public static BigInteger partyABasicAgreement(ECPrivateKeyParameters privateKeyPartyA,
                                              ECPublicKeyParameters publicKeyPartyB)
{
    ECDHCBasicAgreement keyAgreement = new ECDHCBasicAgreement();
    keyAgreement.Init(privateKeyPartyA);

    BigInteger secret = keyAgreement.CalculateAgreement(publicKeyPartyB);
     
    return secret;
}

public static BigInteger partyBBasicAgreement(ECPrivateKeyParameters privateKeyPartyB,
                                              ECPublicKeyParameters publicKeyPartyA)
{
    ECDHCBasicAgreement keyAgreementParty = new ECDHCBasicAgreement();
    keyAgreementParty.Init(privateKeyPartyB);

    BigInteger secret = keyAgreementParty.CalculateAgreement(publicKeyPartyA);
        
    return secret;
}



In Examples 27 and 28 above we have used the sect283k1 elliptic curve which has a co-factor
. Therefore, we need to call the object ECDHCBasicAgreement which will perform the necessary

arithmetic taking the co-factor into account. If the co-factor , then we would replace the object
ECDHCBasicAgreement with the object  ECDHBasicAgreement.



5 Key Encapsulation and Key Wrapping
Key Wrapping in its most general definition is the process of encrypting (“wrapping”) a critical key

 say, with another  say. 

As given in Section 4.1,  Key Encapsulation is generally regarded as a specific Key Agreement
using asymmetric encryption, where the public key is used to encrypt the symmetric key and the
private key is used to decrypt the symmetric key for use in data exchange. Thus we differentiate
between  Key  Wrapping  and  Key  Encapsulation.  (Note  that,  some  authors  do  not  differentiate
between  Key  Wrapping  –  in  our  sense  –  and  Key  Encapsulation.  For  such  authors,  Key
Encapsulation is another form of Key Wrapping.)

Key Wrapping and Key Encapsulation is a common method which is used for protecting a given
key during transportation over an unsecured channel and is also common when storing a key, for
example in a database.  Since Key Wrapping and Key Encapsulation is a common occurrence it is
not  surprising  that  certain  standards  and  best  practices  have  evolved  in  achieving  this.  NIST
provides standards for Key Wrapping with the use of symmetric key algorithms such as AES (see
NIST Special Publication 800-38F) and asymmetric RSA key pairs – although in the case of RSA,
the  NIST terminology used,  describes  the  wrapping function  in  connection  with  key transport.
(Actually  NIST,  which  provides  various  cryptographic  standards,  provides  Key  Encapsulation
details under the heading of Key Transport –see NIST Special Publication 800-56B Revision 2.)

The main security concept to keep in mind with key wrapping is that it is fool hardy to wrap a key
which is expected to have a particular security strength with one that does not at least have the
equivalent security strength. Using a wrapping key with higher security strength  is clearly better,
however, this may not always be possible. Most of the standards used in the BC C# API come from
the NIST documents (indicated above) and RFC 3394 and RFC5649 (which allows symmetric key
wrapping with a different padding scheme to that of RFC 3394).

To get a feeling on how key wrapping is used: consider transporting a key over a channel (whether
secured or not). The wrapping key  would be kept in an HSM (High Security Module) and the
wrapping and unwrapping of the key  would occur within the HSM. This provides an example of
Key Management – which is outside the scope of this document. The point being made, however, is
that the  needs to be as secure (or better) than the key (or keys) you are wrapping and further the

 needs to be protected.



5.1 Key Wrapping Using Symmetric Keys

The common standard using symmetric keys is a family referred to as AES-KW. This refers to using
AES as the block cipher (with a key length of 128, 192 or 256 bits).  The output  generated is
provided in blocks of 64 bits. In the simplest case, without any padding, we have the example below
which is based upon RFC 3394 with the default initialisation vector .
The input is the  (the AES wrapping key or KEK given as keyParam in the example below); the
data (or key) to be wrapped in blocks of 64 bits (given as unwrappedData in the example below); and
the output is the encrypted data (or encrypted/wrapped key). Similarly, for unwrapping the wrapped
data, we input the original  along with the previously wrapped data.

Example 29 – RFC3394 Key Wrapping Default IV
public static byte[] wrapKeyRFC3394(ICipherParameters keyParam, byte[] unwrappedData)
{
    IBlockCipher symmetricBlockCipher = new AesEngine();  
    Rfc3394WrapEngine wrapEngine = new Rfc3394WrapEngine(symmetricBlockCipher);
    wrapEngine.Init(true, keyParam);

    return wrapEngine.Wrap(unwrappedData,0,unwrappedData.Length);
}

public static byte[] unwrapKeyRFC3394(ICipherParameters keyParam, byte[] wrappedData)
{
    IBlockCipher symmetricBlockCipher = new AesEngine();  
    Rfc3394WrapEngine wrapEngine = new Rfc3394WrapEngine(symmetricBlockCipher);
    wrapEngine.Init(false, keyParam);

    return wrapEngine.Unwrap(wrappedData,0,wrappedData.Length);
}

    
The RFC 3394 standard also describes a variation where we can input our own IV. The example 
below demonstrates how you could accomplish this.

Example 30 – RFC3394 Key Wrapping With IV
public static byte[] wrapKeyRFC3394WithIV(ICipherParameters keyParam, 
                                          byte[] IV, byte[] unwrappedData)
{
    ParametersWithIV keyParamWithIV = new ParametersWithIV(keyParam, IV);
    
    IBlockCipher symmetricBlockCipher = new AesEngine();  
    Rfc3394WrapEngine wrapEngine = new Rfc3394WrapEngine(symmetricBlockCipher);
    wrapEngine.Init(true, keyParamWithIV);

    return wrapEngine.Wrap(unwrappedData,0,unwrappedData.Length);
}



public static byte[] unwrapKeyRFC3394WithIV(ICipherParameters keyParam, 
                                            byte[] IV, byte[] wrappedData)
{
    ParametersWithIV keyParamWithIV = new ParametersWithIV(keyParam, IV);

    IBlockCipher symmetricBlockCipher = new AesEngine();  
    Rfc3394WrapEngine wrapEngine = new Rfc3394WrapEngine(symmetricBlockCipher);
    wrapEngine.Init(false, keyParamWithIV);

    return wrapEngine.Unwrap(wrappedData,0,wrappedData.Length);
}



Appendix A – Built in Curves

Appendix A.1 – Prime Field Built in Curves

Name IDs OID
ANSSI FRP 256v1 FRP256v1 1.2.250.1.223.101.256.1

ECC Brainpool P160r1 brainpoolp160r1 1.3.36.3.3.2.8.1.1.1

ECC Brainpool P160t1 brainpoolp160t1 1.3.36.3.3.2.8.1.1.2

ECC Brainpool P192r1 brainpoolp192r1 1.3.36.3.3.2.8.1.1.3

ECC Brainpool P192t1 brainpoolp192t1 1.3.36.3.3.2.8.1.1.4

ECC Brainpool P224r1 brainpoolp224r1 1.3.36.3.3.2.8.1.1.5

ECC Brainpool P224t1 brainpoolp224t1 1.3.36.3.3.2.8.1.1.6

ECC Brainpool P256r1 brainpoolp256r1 1.3.36.3.3.2.8.1.1.7

ECC Brainpool P256t1 brainpoolp256t1 1.3.36.3.3.2.8.1.1.8

ECC Brainpool P320r1 brainpoolp320r1 1.3.36.3.3.2.8.1.1.9

ECC Brainpool P320t1 brainpoolp320t1 1.3.36.3.3.2.8.1.1.10

ECC Brainpool P384r1 brainpoolp384r1 1.3.36.3.3.2.8.1.1.11

ECC Brainpool P384t1 brainpoolp384t1 1.3.36.3.3.2.8.1.1.12

ECC Brainpool P512r1 brainpoolp512r1 1.3.36.3.3.2.8.1.1.13

ECC Brainpool P512t1 brainpoolp512t1 1.3.36.3.3.2.8.1.1.14

GOST RFC4357 GostR3410-2001-CryptoPro-A

GOST RFC4357 GostR3410-2001-CryptoPro-B

GOST RFC4357 GostR3410-2001-CryptoPro-C

GOST RFC5832 tc26-gost-3410-2012-256-
paramSetA

GOST RFC7836 tc26-gost-3410-12-512-
paramSetA

GOST RFC7836 tc26-gost-3410-12-512-
paramSetB

GOST RFC5832 tc26_gost_3410_12_512_param
SetC

NIST P-192 P-192 1.2.840.10045.3.1.1

NIST P-224 P-224 1.3.132.0.33

NIST P-256 P-256 1.2.840.10045.3.1.7

NIST P-384 P-384 1.3.132.0.34

NIST P-521 P-521 1.3.132.0.35

SEC secp112r1 secp112r1 1.3.132.0.6



Name IDs OID
SEC secp112r2 secp112r2 1.3.132.0.7

SEC secp128r1 secp128r1 1.3.132.0.28

SEC secp128r2 secp128r2 1.3.132.0.29

SEC secp160k1 secp160k1 1.3.132.0.9

SEC secp160r1 secp160r1 1.3.132.0.8

SEC secp160r2 secp160r2 1.3.132.0.30

SEC secp192k1 secp192k1 1.3.132.0.31

SEC secp192r1 secp192r1 1.2.840.10045.3.1.1

SEC secp224k1 secp224k1 1.3.132.0.32

SEC secp224r1 secp224r1 1.3.132.0.33

SEC secp256k1 secp256k1 1.3.132.0.10

SEC secp256r1 secp256r1 1.2.840.10045.3.1.7

SEC secp384r1 secp384r1 1.3.132.0.34

SEC secp521r1 secp521r1 1.3.132.0.35

SM2 sm2p256v1 1.2.156.10197.1.301

X9.62 prime192v1 prime192v1 1.2.840.10045.3.1.1

X9.62 prime192v2 prime192v2 1.2.840.10045.3.1.2

X9.62 prime192v3 prime192v3 1.2.840.10045.3.1.3

X9.62 prime239v1 prime239v1 1.2.840.10045.3.1.4

X9.62 prime239v2 prime239v2 1.2.840.10045.3.1.5

X9.62 prime239v3 prime239v3 1.2.840.10045.3.1.6

X9.62 prime256v1 prime256v1 1.2.840.10045.3.1.7

Appendix A.2 – Binary Field Built in Curves
Name IDs OID

NIST B-163 B-163 1.3.132.0.15

NIST B-233 B-233 1.3.132.0.27

NIST B-283 B-283 1.3.132.0.17

NIST B-409 B-409 1.3.132.0.37

NIST B-571 B-571 1.3.132.0.39

NIST K-163 K-163 1.3.132.0.1

NIST K-233 K-233 1.3.132.0.26

NIST K-283 K-283 1.3.132.0.16



Name IDs OID
NIST K-409 K-409 1.3.132.0.36

NIST K-571 K-571 1.3.132.0.38

SEC sect113r1 sect113r1 1.3.132.0.4

SEC sect113r2 sect113r2 1.3.132.0.5

SEC sect131r1 sect131r1 1.3.132.0.22

SEC sect131r2 sect131r2 1.3.132.0.23

SEC sect163k1 sect163k1 1.3.132.0.1

SEC sect163r1 sect163r1 1.3.132.0.2

SEC sect163r2 sect163r2 1.3.132.0.15

SEC sect193r1 sect193r1 1.3.132.0.24

SEC sect193r2 sect193r2 1.3.132.0.25

SEC sect233k1 sect233k1 1.3.132.0.26

SEC sect233r1 sect233r1 1.3.132.0.27

SEC sect239k1 sect239k1 1.3.132.0.3

SEC sect283k1 sect283k1 1.3.132.0.16

SEC sect409k1 sect409k1 1.3.132.0.36

SEC sect409r1 sect409r1 1.3.132.0.37

SEC sect571k1 sect571k1 1.3.132.0.38

SEC sect571r1 sect571r1 1.3.132.0.39

X9.62 c2pnb163v1 c2pnb163v1 1.2.840.10045.3.0.1

X9.62 c2pnb163v2 c2pnb163v2 1.2.840.10045.3.0.2

X9.62 c2pnb163v3 c2pnb163v3 1.2.840.10045.3.0.3

X9.62 c2pnb176w1 c2pnb176w1 1.2.840.10045.3.0.4

X9.62 c2tnb191v1 c2tnb191v1 1.2.840.10045.3.0.5

X9.62 c2tnb191v2 c2tnb191v2 1.2.840.10045.3.0.6

X9.62 c2tnb191v3 c2tnb191v3 1.2.840.10045.3.0.7

X9.62 c2pnb208w1 c2pnb208w1 1.2.840.10045.3.0.10

X9.62 c2tnb239v1 c2tnb239v1 1.2.840.10045.3.0.11

X9.62 c2tnb239v2 c2tnb239v2 1.2.840.10045.3.0.12

X9.62 c2tnb239v3 c2tnb239v3 1.2.840.10045.3.0.13

X9.62 c2pnb272w1 c2pnb272w1 1.2.840.10045.3.0.16

X9.62 c2pnb304w1 c2pnb304w1 1.2.840.10045.3.0.17

X9.62 c2tnb359v1 c2tnb359v1 1.2.840.10045.3.0.18

X9.62 c2pnb368w1 c2pnb368w1 1.2.840.10045.3.0.19

X9.62 c2tnb431r1 c2tnb431r1 1.2.840.10045.3.0.20
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